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Abstract. It is shown that the canonical tensor and not the Frenkel tensor is the correct 
tensor to describe the gravitational influence of direct particle fields. This corrects an earlier 
calculation which had resulted in favour of the Frenkel tensor. The forms of the two tensors 
are examined in cosmological models with perfect future absorbers and imperfect past 
absorbers, and it is shown that only the canonical tensor is physically reasonable. 

1. Introduction 

Recent investigations (Hogarth 1962, Hoyle and Narlikar 1963, 1969, 1971, Roe 1969, 
Davies 1971) have shown that in suitable cosmological models it is possible to describe 
electromagnetism in terms of direct interactions between charged particles. This picture 
does away with the notion of ‘field’ as an independent entity, a notion which plays such 
an important part in maxwellian electrodynamics. Instead we have the so-called ‘direct 
particle fields’ (ie fields which are defined in terms of charged particles). In this paper 
we shall refer to this alternative theory of electromagnetism as the direct particle theory. 

Any theory proposed as an alternative to Maxwell’s theory must meet at least two 
requirements. First, it must successfully account for all the electrodynamic phenomena 
associated with charged leptons at the quantum as well as the classical level. Secondly, 
it must provide a consistent picture of the gravitational influence exerted by electro- 
magnetism through Einstein’s equations of gravitation. The first requirement has been 
adequately met as shown in the work referred to above. What about the second require- 
ment? In the Maxwell theory, the fields define a stress energy tensor, which acts as a 
source of Einstein’s equations. In the absence of fields how does the direct particle 
theory deal with this problem? 

In this pioneering work on action at a distance, Wheeler and Feynman (1949) had 
arrived at two possible forms of the stress energy tensors, the Frenkel tensor and the 
canonical tensor, each of which served equally well to describe the exchange of energy and 
momentum between charged particles. However, this discussion was confined to 
electrodynamics alone, and the authors concluded : ‘From the standpoint of pure electro- 
dynamics it is not possible to choose between the two tensors. The difference is of course 
significant for the general theory of relativity, where energy has associated with it a 
gravitational mass. So far we have not attempted to discriminate between the two 
possibilities by way of this higher standard.’ 

Such a discrimination was attempted by Hoyle and Narlikar (1964, to be referred 
to as I) and their conclusion was that the ‘correct’ tensor is the Frenkel tensor. However, 
the computation leading to this conclusion missed one subtle point which in fact alters 

1274 



Stress energy tensors in direct particle theories 1275 

the result. The purpose of this paper is to redo the computation which now results in 
favour of the canonical tensor. As we shall see, this result not only applies to electro- 
dynamics but also to other direct particle theories. 

2. Action at a distance electrodynamics 

We begin with a brief description of electrodynamics of direct interparticle action in 
riemannian space-time. (For details, see Hoyle and Narlikar 1963.) The starting point 
is the Fokker action 

J ma da - c 1 47te,eb GiAis daiA dgB,  
a J J  s =  -c 

a < b  

where a, b, . . . are the charged particles, e,, m, being the charge and mass of the ath 
particle. daiA represents the coordinate differentials at a typical point A on the world 
line of a, and da is the element of proper time at A. The propagator CiAiB represents the 
interaction between typical points A on the world line of a and B on the world line of b, 
and it acts like a vector at either point. It satisfies the symmetry condition 

If we keep A fixed and replace B by a variable point X, GiXiA satisfies the wave equation 

in which the 0 is the wave operator with respect to X, R /  is the Ricci tensor, d4(X, A) 
is the four-dimensional delta function, gix iA is the parallel propagator defined by Synge 
(1960) and g(X, A) its determinant. We also have the relation 

GixkA;ix  - - - G(x, A);kA, 

OC(X, A) = 6,(X, A)(  -g(X, A))-’”. 

(4) 
where G(X, A) is the symmetric solution of the scalar wave equation 

( 5 )  

The propagators GiXiA and G(X, A) have delta function supports on the null cone from A 
and also support inside the null cone (DeWitt and Brehme 1960). In flat space, when the 
space-time metric gik becomes the Minkowski metric l f i k  = diag( - 1, - 1, - 1, 1) we 
have 

4 , 

The action (1) describes the action at a distance between pairs of charged particles. 
Because of the symmetry (2) the charges interact equally via advanced and retarded 
interactions (see figure 1). These can be described by ‘direct particle’ potentials and fields 
which are defined as follows : 

.. 

Note that Ai“,‘ and F e k k x  are defined in terms of particle a ;  they have no existence indepen- 
dent of the particle. They satisfy the Maxwell equations and the Lorentz gauge condition 
identically. 
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Figure 1. Delayed action at a distance between charged particles a and b operates via retarded 
and advanced effects. 

At first sight the perfect time symmetry of this description poses problems. Instead 
of the retarded fields observed in nature, we seem to have a 'half and half' combination 
of retarded and advanced fields. Wheeler and Feynman (1945) resolved this difficulty 
by appealing to the time asymmetry in thermodynamics in a static universe. However, 
a more natural resolution came when proper account was taken of cosmology (Hogarth 
1962, Hoyle and Narlikar 1963). We shall discuss the cosmological implications briefly 
towards the end. 

3. The electromagnetic stress energy tensor 

We now turn to the central theme of this paper : that of determining the stress energy 
tensor of electromagnetic theory as described in the last section. It is well known that the 
general theory of relativity provides a prescription for determining the stress energy 
tensor for any field theory described in riemannian space. Suppose @ is a field of arbitrary 
tensorial rank, described by an action 

A = L[Q,]J( - g )  d4x s 
where L[@] is the field lagrangian which is a scalar built of Q, and its derivatives. If we 
now perform a variation of the metric the change in A is expressed in the form 

then T i k [ @ ]  is identified as the stress energy tensor of 0. For the Maxwell field Fik we 
have 

1 
1671 

L[F] = ----F,,,,,F"" 

and (9) leads to 
1 

411 
T'k[F]  = - ( p F & i k -  F',Fk'). 



Stress energy tensors in direct particle theories 1277 

Can this prescription be used for direct particle theories? At first sight the answer 
appears to be in the negative. The direct particle theories do not have a term in the 
action depending only on fields, since fields do not exist as independent entities in such 
theories. Nevertheless, the action as a whole does depend on space-time geometry in a 
non-trivial way and a change of g i k  leads to a change of A even in a direct particle theory. 
For instance in the electromagnetic case, if we write 

n n  

a < b  J J  

- 
then g i k  -+ g i k +  6 g i k  leads to G i A k B  -+ GiAkB + 6 G i A k B  and hence to A -+ A + 6A. We then 
define Tik  by 

SA = -*Tik6gikJ( - g )  d4x, 

as in (9). To determine T i k  we therefore need to calculate 6 G i A k B .  

To evaluate 6 C i A k B  we shall follow the procedure of I, although details will turn out 
to be different. We begin with definitions. Writing ordinary derivatives with commas, 
define 

(14) 
- - 

G- 
& i x k X i A  = G k x i A ; i X  - G i X i A ; k X .  

Then from (7) we get 

It will be convenient for later work to define the advanced and retarded components 
of various propagators. G i x k A  has support inside and on the light cone from A or X. 
Considering A as the source point and X as the general point we write 

- 
G i X k A  = $G!i\A + G:tlA), (16) 

where iGf:\;',, is that part of GixkA which lies on the future light cone of A. 4G;:iA is 
similarly the part of G i x k A  having support inside and on the past light cone of A. We then 
have 

(17) = G a d v  G a d :  = G r e t  
k A l x  Ixk.49 k A l x  I x k A '  

In the same way we write 

(18) 
The advanced and retarded components of g i x k X i A  can be related to the advanced and 
retarded direct particle fields of the iast section : 

0- 1 r r e t  r a d v  
J c i X k X i A  = dk i X k X i A  + ,Y+ i x k x i n ) .  

FIPx)kx a d v  - d' i X k X i A  daiA~ 
- s radv 

F i t ) k x  r e t  = 1 9!iixiA daiA. 

With these definitions we now proceed to determine BGiAkB. 
As in I we recast (3) in the form 

( g i l f k J (  - g ) F m f i A ) , k  + J C  - g ) g i f G k i A ; k f  = 6,(X, A ) g i i A  
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where we have dropped the s u f i  X from the vector indices at X .  This saves a lot of 
writing without causing ambiguity. 

A variation of (21) under gik + gik + 6gik gives therefore 

where, after some mathematical reduction, 

(23) 

In the above reduction we have used (4) in the second and third terms of QiiA. 
The wave operator in (22) is the same as that in (21). We can therefore use the Green 

functions of (21) to construct the solution of (22). If the variation of geometry is confined 
to a region V of the space-time, we can calculate GGiBiA formally from (22) in the form 

6G. lB lA  . = Iv GieiQiiAd4x. 

In (24) we have used GiBi as the Green function mentioned above. This seems a natural 
step to take since all along we have been considering the symmetric Green function 
explicitly. Also (24) guarantees that GGiBiA = GGiAi, which is an essential requirement 
here. This procedure, followed in I, leads to the Frenkel tensor 

However, as we shall now see, this apparently reasonable procedure, is not correct. 
To see this we write (24) in an explicit form obtained after some straightforward use of 
the divergence theorem (cf I for details) : 

That 6GiBiA = BGiAiB is immediately obvious from (26) and from the symmetry pro- 
perties of the Green functions involved. There is, however, another important property 
to reckon with. For, we know that GiBiA is zero whenever B lies outside the light cone 
of A (ie, whenever si, < 0). In a small variation of geometry the light cones are expected 
to change only slightly. So if s i B  < 0 originally, we would expect s i B  < 0 after the 
variation. unless siB Y 0. We shall consider the situation illustrated in figure 2, where 
s i B  c 0. The shaded region V is the one where 6gik # 0 and X is a typical point of V 
such that six > 0, s i x  > 0. Clearly, for such a point the integrands in (26) will not in 
general vanish. Hence, except in very special cases of Gg,, and V we will have GGiBiA # 0. 
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Figure 2. The point X in V lies inside the null cones of A and B while B lies outside the 
null cone of A. The correct solution for SG,,,, should not include any variational contribu- 
tions from such points as X. This is ensured by the use of (30). 

The reason why this has happened is that the wrong Green function was used in the 
solution of (22). In general we can use any suitable linear combination of the advanced 
and retarded Green functions defined through (16) because these Green functions also 
satisfy the equation (3). In the correct solution the combination has to be adjusted in 
such a way to ensure the symmetry condition 6GiBiA = GGiAi, as well as the support 
condition that GGieiA = 0 for s i ,  < 0.. It is not difficult to spot the correct combination 
and to verify that it is unique. We state the answer : 

where, as in (16) and (18), we write 

QiiA = + Qii" ,dv) .  (28) 
This break up of the problem into retarded and advanced components is possible 

provided the topological properties of space are not so weird as to mix up the past and 
future light cones from any point. 

The evaluation of (27) is straightforward if a little cumbersome. To illustrate the 
use of the definitions and the properties (16)<18) in this calculation we will evaluate one 
term of the full expression contained in (27). Consider 

-e  [d(girgmk,/( -g))pz;iA],kGii: d4x. (29) 
Using (17), we replace Gi:: by G;; and apply the divergence theorem to the resulting 
expression. Since the metrical variations vanish on the boundary of V, (29) becomes 

5 6(g"gmk,/( - g ) ) ~ ~ ~ i A G ~ ~ k  d4x. 

Further, since g:;iA = --F;ziA we may rewrite (29) as 
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The other terms can be similarly reduced and the final answer comes out as 

GGieiA = -; G(gilgmkJ( -g))(,FE;iAF$G +,F~~~,,F\&) d4x s 
++ 1 S(J( -g)g") [(Gre'(X, A ) , i A I G g  + GTet(X, B),i,IG;t) 

+ (Gadv(X, A),iAIG;;i + Gadv(X, B),iBIG;;k)] d4x 

-3 s S(J( -g))(Gre'(X, A),iAGadv(X, B),i, + Gad'(% A),iAGreYX, B),J d4x. 

That 6GiBiA = SciAi, is obvious. Also, reference to figure 2 shows that GGiBi, = 0 for 
the case siB e 0. For, in the case shown in figure 2, a typical point X of V lies in the 
future light cones of A and B and therefore there is no contribution from (30) to 6GiB,,. 

The rest of the calculation is more or less similar to that in I. Using the definitions 
(19) and (20), and making use of the fact that 

1 Gret(X, A),iA da'^ = Gadv(X, A),iA daiA = 0, s 
for an integration along the entire world line of the charge a, we get 

Comparison with (13) then gives the energy tensor as 

This is the canonical tensor. 
As pointed out by Wheeler and Feynman, the canonical tensor (33) differs from the 

Frenkel tensor (25) by a tensor of zero divergence. Hence so far as classical electro- 
dynamics is concerned it does not matter whether we use (25) or (33). In general relativity, 
on the other hand, the actual values of Tik and not Ti: are required. There the difference 
between (25) and (33) does matter. It is satisfactory therefore that the gravitational 
prescription should lead to an unambiguous tensor. 

The duality of Frenkel and canonical tensors is common in all direct particle theories. 
Earlier Narlikar (1968) had shown that for every tensor field of arbitrary rank described 
by a lagrangian bilinear in the field and its first derivatives, there exists a direct particle 
theory. The method discussed above can be generalized to apply to all such direct 
particle fields. The result will be to yield the canonical tensor as the correct stress energy 
tensor in all cases. 
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4. Response of the universe 

We now return to the point raised at the end of 5 2. Is the presence of advanced effects 
in (33) an embarrassment to the theory? To answer this question, let us first consider the 
situation in Maxwell field theory. 

In Maxwell’s theory the stress energy tensor is given by (1 1). In ( 1  1) we did not specify 
whether Fik is advanced or retarded, or a mixture. Indeed such a specification is meaning- 
less unless we relate it to a source. To fix ideas suppose we momentarily activate the 
charge a and consider (1 1)  for such a situation. If we solve Maxwell’s equations for the 
motion of a we will get a general solution of the form 

where U is a constant. However, in order to maintain causality we specify that there was 
no disturbance prior to the motion of charge a and hence choose a = 1 .  Thus in this 
example Fik in ( 1 1 )  is the retarded field of a. 

In the theory of direct interparticle action we have to proceed differently in dealing 
with the same situation, and we refer to the treatment given by Hoyle and Narlikar 
(1963). There it was shown that in a cosmological model with a perfect future absorber 
but an imperfect past absorber, the following relation holds when the charge a is excited : 

FE; - FIpdv+ (F‘b ’  ret - Fb’ adv ) = - 0 . 
b + a  

This means the field in the neighbourhood of charge a is given by 

(35) 

where we have made use of (35). At first sight it would appear that (35) enables us to 
write (36) also as 

b b + a  

However (36) and (37) have different interpretations, because of the asymmetric behaviour 
of the past and future absorbers. In (36), the retarded fields of b # a arise from disturb- 
ances caused in the charges b # a in the future absorber as a consequence of the retarded 
field of a, and because of attenuation by the redshift effect these are small. Certainly as 
(36) shows there is no disturbance prior to the excitation of a. (37) describes the same 
phenomenon in terms of advanced fields, but in this case the fields of b # a are also large. 
(36) is therefore a more convenient mode of description than (37). If, on the other hand, 
the universe were a perfect absorber in the past and an imperfect absorber in the future 
the roles of (36) and (37) would be interchanged. In that case we would use (37) to 
describe a situation where there is no disturbance after a has been moved, but there is 
disturbance prior to the movement of a. In this case the terms FLYv for b # a are small, 
but the terms Fjb,’,, b # a, are large because they arise from disturbances in the past 
absorber. A detailed discussion of this asymmetry is given in Hoyle and Narlikar 
(1963). Needless to say that of the two cases considered above only the former is con- 
sistent with the other time asymmetric processes like the expansion of the universe. 

We shall accordingly use a cosmological model with a perfect future absorber and 
an imperfect past absorber. In such a model charges interact through retarded effects 
as given in (36). As in the case of Maxwell field theory we shall consider the form of the 
stress energy tensors (25) or (33) in the neighbourhood of charge a which has been 
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momentarily accelerated at the world point A. To save writing too many indices, we 
will write a typical term of (25) or (33) simply as a product F(a) 0 Fb’ or F::! 0 Fipd, as 
the case may be. Then using (35) we get 

(38) C FE,’, 0 F S v  = FE’, 0 C +FE’, 0 (FE;  - F‘,“,,). 
b Z a  b # a  

Of the terms on the right-hand side, the first one is negligible if there is no systematic 
field at A from other charges. The term -F!:i 0 FfPdv is zero, since at no point other 

cones from A intersect. Thus only the term than A do the past and future light 
F!;! 0 F::! remains. Hence in this case 

This is a ‘reasonable’ result. 
With the Frenkel tensor we have a 

the canonical tensor reduces to (1 1) with 

(39) 

problem. There we have, for a typical product 

2 F(a)@F(b) = F(a)@ C F!;W+$F(a)0(F!bl- F ( a )  ) - 1. 
where the other terms have been ignored for similar reasons as those given for the 
canonical tensor. In this case we see that even in a completely absorbing universe, some 
advanced effects on geometry would persist. These effects would be embarrassingly 
large in the remote past of an ever expanding universe, because of blueshift. Therefore 
from the classical point of view the Frenkel tensor does not appear so ‘reasonable’. 

(a)0F(a) - F ( a )  0 (a) 
adv - 4(Fret ret adv Fadv)r (40) 

b f a  b + a  
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